On determining efficient finite mixture models with compact and essential components for clustering data
نویسندگان
چکیده
منابع مشابه
Finite Mixture Models with Negative Components
Mixture models, especially mixtures of Gaussian, have been widely used due to their great flexibility and power. Non-Gaussian clusters can be approximated by several Gaussian components, however, it can not always acquire appropriate results. By cancelling the nonnegative constraint to mixture coefficients and introducing a new concept of “negative components”, we extend the traditional mixture...
متن کاملFinite Mixture Models and Model-Based Clustering
Finite mixture models have a long history in statistics, having been used to model pupulation heterogeneity, generalize distributional assumptions, and lately, for providing a convenient yet formal framework for clustering and classification. This paper provides a detailed review into mixture models and model-based clustering. Recent trends in the area, as well as open problems are also discussed.
متن کاملPositive Data Clustering Using Finite Inverted Dirichlet Mixture Models
Positive Data Clustering Using Finite Inverted Dirichlet Mixture Models Taoufik BDIRI In this thesis we present an unsupervised algorithm for learning finite mixture models from multivariate positive data. Indeed, this kind of data appears naturally in many applications, yet it has not been adequately addressed in the past. This mixture model is based on the inverted Dirichlet distribution, whi...
متن کاملClustering Binary Data with Bernoulli Mixture Models
Clustering is an unsupervised learning technique that seeks “natural” groupings in data. One form of data that has not been widely studied in the context of clustering is binary data. A rich statistical framework for clustering binary data is the Bernoulli mixture model for which there exists both Bayesian and non-Bayesian approaches. This paper reviews the development and application of Bernou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Egyptian Informatics Journal
سال: 2013
ISSN: 1110-8665
DOI: 10.1016/j.eij.2013.02.002